特異点とローラン展開【理工数学】
特異点と極 関数f(z)が、z=aで正則でないが、z=aの近傍では正則であるとする。 このような点aを、f(z)の孤立特異点という。特異点とは、微分不可能な点のことである。 例えば、f(z)=1/zの場合、z=0は孤立特異点である。 特異点は、その性質により次のように分類される。 除去可能な特異点 […]
特異点と極 関数f(z)が、z=aで正則でないが、z=aの近傍では正則であるとする。 このような点aを、f(z)の孤立特異点という。特異点とは、微分不可能な点のことである。 例えば、f(z)=1/zの場合、z=0は孤立特異点である。 特異点は、その性質により次のように分類される。 除去可能な特異点 […]