当ブログは記事内にプロモーションを含みます。ご了承ください。
TAG

留数定理

留数定理の広義積分への応用【理工数学】

広義積分の計算 留数定理の応用で、広義積分を計算することができる。 上のように、-RからRまでの直線経路と、原点を中心とする半径Rの半円経路を考える。こうしてできる閉曲線経路をとることで $$\int_{-\infty}^{\infty} \to \lim_{R\to\infty}\int_{-R} […]

ブラジウスの公式-流体中の物体に働く力の計算式

物体に働く力 理想流体中にある物体に働く力を求めるには、その物体まわりの圧力を積分すればよい。圧力は、ベルヌーイの式から得ることができる。 しかし、物体に働く力をいちいち圧力の積分により求めていては計算が煩雑である。そこで、物体に働く力を簡便に求める方法であるブラジウス(Blasius)の公式を導出 […]

留数定理の証明と例題

前回学んだローラン展開を使うと、特異点を含む周回積分を簡単に計算できる強力な武器を使えるようになる。 ここでは、留数の求め方と留数定理を学んでいく。 留数 関数\(f(z)\)をローラン展開したとき $$f(z)=\sum_{n=-\infty}^{\infty}c_n(z-a)^n $$ の\(n […]