実対称行列の性質と直交行列による対角化
前回の記事では、一般の行列の対角化の条件や計算手順を学んだ。 ここでは、実対称行列に着目して、その性質および対角化について解説する。 実対称行列とは 成分がすべて実数である対称行列を実対称行列という。 $$\overline{A}=A(実行列) かつ A^T=A(対称行列)$$ 各成分 […]
前回の記事では、一般の行列の対角化の条件や計算手順を学んだ。 ここでは、実対称行列に着目して、その性質および対角化について解説する。 実対称行列とは 成分がすべて実数である対称行列を実対称行列という。 $$\overline{A}=A(実行列) かつ A^T=A(対称行列)$$ 各成分 […]
連立方程式の解法には、クラメルの公式より実用的な掃き出し法(ガウス・ジョルダンの消去法とも)を用いることが多い。 ここでは、掃き出し法を用いて連立方程式を解く方法、および逆行列を求める方法を解説する。 行列の基本変形について復習し、拡大係数行列の基本変形により解を導く流れを例題を解きな […]