ラプラス変換で微分方程式を解く
ラプラス変換の細かい点は置いておいて、微分方程式をラプラス変換で解く方法を考えていく。 ラプラス変換の定義 ラプラス変換は、時間の関数(t)を別の関数(s)へと変換する手法である。 t≧0で定義された関数f(t)のラプラス変換F(s)は次式で定義される。 $$F(s)=\mathcal{L}[f(t […]
ラプラス変換の細かい点は置いておいて、微分方程式をラプラス変換で解く方法を考えていく。 ラプラス変換の定義 ラプラス変換は、時間の関数(t)を別の関数(s)へと変換する手法である。 t≧0で定義された関数f(t)のラプラス変換F(s)は次式で定義される。 $$F(s)=\mathcal{L}[f(t […]
ここでは定積分の具体的な計算例を示していきます。 さらにウォリスの公式を与えます。この公式は、スターリングの公式の証明にも用いられる式です。 置換積分法 $$f(x)は[a,b]で連続、\phi (t)は[\alpha, \beta]または[\beta, \alpha]でC^1級$$ $$かつa\l […]
今回から、積分法に入っていきます。 まずは不定積分を定義し、積分の計算になれるところから始めたいと思います。 不定積分とは 関数\(f(x)\)に対し、\(F'(x)=f(x)\)を満たす関数\(F(x)\)を、\(f(x)\)の原始関数または不定積分という。 微分・積分を図に示すと上ような関係にな […]