留数定理の証明と例題
前回学んだローラン展開を使うと、特異点を含む周回積分を簡単に計算できる強力な武器を使えるようになる。 ここでは、留数の求め方と留数定理を学んでいく。 留数 関数\(f(z)\)をローラン展開したとき $$f(z)=\sum_{n=-\infty}^{\infty}c_n(z-a)^n $$ の\(n […]
前回学んだローラン展開を使うと、特異点を含む周回積分を簡単に計算できる強力な武器を使えるようになる。 ここでは、留数の求め方と留数定理を学んでいく。 留数 関数\(f(z)\)をローラン展開したとき $$f(z)=\sum_{n=-\infty}^{\infty}c_n(z-a)^n $$ の\(n […]
実数関数について定義したテイラー展開を、複素関数についても定義していく。 テイラー展開 定義 複素関数\(f(z)\)は、点\(a\)を中心とする半径\(R\)の円およびその内部の領域で正則とする。 このとき、円の内部の点\(z_0\)について、次式が成立する。 $$f(z_0)=\sum_{n=0 […]
グルサ(Goursat)の定理 コーシーの積分公式は、次式で与えられた。 $$f(z_0)=\frac{1}{2\pi i}\oint_C\frac{f(z)}{z-z_0}dz$$ このままでは、分母がn乗の形になっている積分を計算することができない。この公式を拡張し、n乗に対応できるようにした式 […]
複素関数の積分で重要なコーシーの積分公式を学ぶ。 コーシーの積分公式 複素関数\(f(z)\)は開集合\(K\)上で正則関数とする。\(C\)を\(K\)に含まれる滑らかな閉曲線とし、\(D\)を\(C\)の内部の領域、\(D^e\)を\(C\)の外部の領域とする。 このとき、次が成り立つ。 $$\ […]
コーシー・リーマンの関係式については以下の記事をご参照ください。 複素関数の微分可能性とコーシー・リーマンの関係式 以下の複素関数f(z)が微分可能であるか判別せよ。微分可能である場合、微分可能な領域も述べよ。 複素関数は、コーシー・リーマンの関係式を満たす点で微分可能であることを利用 […]
複素関数の微分は、実数関数の微分と似た点も多い。しかし、微分可能性についてはより深い議論が必要になる。 ここでは、複素関数の微分可能性を判定する重要な関係式である、コーシー・リーマン(Cauchy-Riemann)の関係式を導く。 複素関数の微分 連続性 任意の\(\varepsilon>0\ […]