当ブログは記事内にプロモーションを含みます。ご了承ください。
TAG

偏微分

包絡線の求め方と全微分方程式

偏微分の応用第3回では、「包絡線」と「全微分方程式」について学んでいきます。 前回までの内容はこちら→曲線について・極値について   包絡線 あるパラメータ\(\alpha\)を含む方程式\(f(x, y, \alpha)=0\)は、\(\alpha\)を固定すると\(xy\)-平面上で一 […]

多変数関数の極値とラグランジュの未定乗数法

前回(偏微分の応用①曲面)に引き続き、偏微分の応用について考えていきます。 今回は極値について例題を交えて学んでいきましょう。 極値 極値の定義は以下の通りです。 関数\(f(P)\)が点\(P_0\)を含むある領域で定義されているとする。 \(P_0\)の近くで\(f(P)\le f(P_0)\) […]

曲面の方向微分係数と法線ベクトル・接平面の方程式

ここからは偏微分の応用の話に入ります。 まずは、偏微分を用いて空間中の曲面の特徴について調べていきましょう。   曲面 $$C^1級の2変数関数z=f(x,y)は、xyz空間において曲面を表す$$ 偏微分係数\(f_x(a,b)\)は、定義より $$f_x(a,b)=\left. \fra […]

陰関数と偏微分ー陰関数定理【理工数学】

偏微分の続きです。陰関数について紹介しておきます。 陰関数とは 2つの変数x, yの間に、ある関係式F(x, y)=0が成り立っているとします。 xを与えると、これはyの方程式とみて解くことでyの値がいくつか求まりますから、yはxの関数になっています。 このことを、関係式F(x, y)=0が定める陰 […]

合成関数の偏微分と多変数関数のテイラーの定理

前回は偏微分の計算について学びました。 ここから、理工系の分野でよく用いられる全微分の概念からチェインルール、テイラーの定理について学んでいきます。 全微分 以下、\(f(x, y)\)は点\((a, b)\)の近傍で定義されているとします。   適当な定数\(A、B\)に対して $$\D […]

偏微分の基礎と偏導関数の計算例

ここまで点集合と点列、多変数関数の極限と連続性と準備をしてきました。 ここからようやく、多変数関数の偏微分について学んでいきます。 偏微分・偏導関数 定義 関数\(z=f(x, y)\)が点\(P_0(a, b)\)の近傍で定義されているとします。 \(x\)の関数\(f(x, b)\)が\(x=a […]

偏微分②多変数関数の極限と連続性に関する諸定理【理工数学】

前回学んだ点集合をもとに、関数について論じていきます。   平面上の点集合Dの各点に、何らかの方法で実数が対応しているとき、D上の一つの関数fが与えられたとします。D上の点Pに対応する値をf(P)で表し、関数f(P)のように書くこととします。このDを関数f(P)の定義域と呼びます。 関数f […]

点集合の定義と点列の収束性

偏微分を取り扱うために、平面上の点の集合について学んでおく必要があります。 ここでは、点集合と点列について考えていきます。 点集合 距離 平面上の2点\(P(x, y)、Q(x’, y’)\)の距離を\(d(P, Q)\)とかくことにします。すなわち $$d(P,Q)=\sq […]