包絡線の求め方と全微分方程式
偏微分の応用第3回では、「包絡線」と「全微分方程式」について学んでいきます。 前回までの内容はこちら→曲線について・極値について 包絡線 あるパラメータ\(\alpha\)を含む方程式\(f(x, y, \alpha)=0\)は、\(\alpha\)を固定すると\(xy\)-平面上で一 […]
偏微分の応用第3回では、「包絡線」と「全微分方程式」について学んでいきます。 前回までの内容はこちら→曲線について・極値について 包絡線 あるパラメータ\(\alpha\)を含む方程式\(f(x, y, \alpha)=0\)は、\(\alpha\)を固定すると\(xy\)-平面上で一 […]
前回(偏微分の応用①曲面)に引き続き、偏微分の応用について考えていきます。 今回は極値について例題を交えて学んでいきましょう。 極値 極値の定義は以下の通りです。 関数\(f(P)\)が点\(P_0\)を含むある領域で定義されているとする。 \(P_0\)の近くで\(f(P)\le f(P_0)\) […]
ここからは偏微分の応用の話に入ります。 まずは、偏微分を用いて空間中の曲面の特徴について調べていきましょう。 曲面 $$C^1級の2変数関数z=f(x,y)は、xyz空間において曲面を表す$$ 偏微分係数\(f_x(a,b)\)は、定義より $$f_x(a,b)=\left. \fra […]
偏微分の続きです。陰関数について紹介しておきます。 陰関数とは 2つの変数x, yの間に、ある関係式F(x, y)=0が成り立っているとします。 xを与えると、これはyの方程式とみて解くことでyの値がいくつか求まりますから、yはxの関数になっています。 このことを、関係式F(x, y)=0が定める陰 […]
前回は偏微分の計算について学びました。 ここから、理工系の分野でよく用いられる全微分の概念からチェインルール、テイラーの定理について学んでいきます。 全微分 以下、\(f(x, y)\)は点\((a, b)\)の近傍で定義されているとします。 適当な定数\(A、B\)に対して $$\D […]
ここまで点集合と点列、多変数関数の極限と連続性と準備をしてきました。 ここからようやく、多変数関数の偏微分について学んでいきます。 偏微分・偏導関数 定義 関数\(z=f(x, y)\)が点\(P_0(a, b)\)の近傍で定義されているとします。 \(x\)の関数\(f(x, b)\)が\(x=a […]
前回学んだ点集合をもとに、関数について論じていきます。 平面上の点集合Dの各点に、何らかの方法で実数が対応しているとき、D上の一つの関数fが与えられたとします。D上の点Pに対応する値をf(P)で表し、関数f(P)のように書くこととします。このDを関数f(P)の定義域と呼びます。 関数f […]
偏微分を取り扱うために、平面上の点の集合について学んでおく必要があります。 ここでは、点集合と点列について考えていきます。 点集合 距離 平面上の2点\(P(x, y)、Q(x’, y’)\)の距離を\(d(P, Q)\)とかくことにします。すなわち $$d(P,Q)=\sq […]