当ブログは記事内にプロモーションを含みます。ご了承ください。
CATEGORY

理工数学

広義積分の収束条件とガンマ関数・ベータ関数について

前回に引き続き、広義積分の収束について学んでいきます。 絶対収束 被積分関数は積分区間の内側で連続であるとします。 一般に、\(|f(x)|\)がある区間で広義可積であるとき、その区間で\(f(x)\)は絶対可積であるといい、f(x)の広義積分は絶対収束するといいます。   不等式 $$\ […]

非有界関数および無限区間における広義積分の計算

これまでは有界な関数の有限区間における積分を扱ってきました。 ここからは、有界でない関数の積分および無限区間における積分を定義していきたいと思います。 非有界関数の積分 \(f(x)\)は\((a,b]\)上の非有界関数で、任意の\(a'(a<a'<b)\)に対して\([a’ […]

積分の平均値定理と微分積分学の基本定理

前回は、定積分の定義と積分可能性について学びました。(定積分①) 今回は、まずはじめに定積分に成り立つ性質および積分の平均値の定理について述べます。そして最後に、解析学の重要な定理である「微分積分学の基本定理」を示していきます。 微分積分学の基本定理により、微分と積分が逆演算であることが示されます。 […]

定積分①定積分の定義と積分可能性の判定に関する諸定理【理工数学】

この記事から数回にわたって、定積分について学んでいきます。 不定積分についてはこちら ⇒ 不定積分の定義と公式、有理関数・三角関数・無理関数の不定積分 定積分 リーマン和 定積分の始まりは、「細かく分けて足し合わせる」ことです。計算も大切ですが、そもそもの考え方を理解しておきましょう。 $$f(x) […]

特性方程式と2階線形微分方程式の解法

今回学ぶ微分方程式が、大学1回生で学ぶ最も難しいタイプのものになります。 これまでの微分方程式の復習はこちら⇒1階線形微分方程式、2階線形微分方程式   手順は長くなりますが、丁寧に計算していけば必ず解けるようになります。それではいきましょう。 定数係数2階線形微分方程式 最終目標は、 $ […]

2階線形微分方程式の解法

1階線形微分方程式に続き、2階の微分方程式について考えていきたいと思います。 一般に、2階以上の微分方程式について積分を使って解を求める公式は存在しません。なのでここでは解の存在や性質に関して論じることにします。 2階線形微分方程式 $$y^{\prime\prime}+p_1(x)y’ […]

変数分離形・同次形・1階線形微分方程式の一般解の求め方

不定積分を学ぶことで、微分方程式を解くことができるようになります。 微分方程式とは関数の微分形を含む方程式で、元の関数を求めることを微分方程式を解く、といいます。 微分方程式を解くことで、自然界の様々な法則を導き出していくことができます。まずはその基礎から始め、科学の奥深い世界を楽しむ準備をしていき […]